RP1A..D10, RP1B..D10

Halbleiterrelais, für Leiterplattenmontage, 1 polig

Hauptmerkmale

- · AC Halbleiterrelais für Leiterplattenmontag
- Nullspannungs-oder Momentanschaltend
- Nenn-Betriebsstrom: 10 A (25 A Spitzenwert)
- · Nenn-Betriebsspannung; bis zu 480 V
- In SMD- Technologie gefertigt
- · NiedrigeDC-Steuerspannung: 4 bis 32 VDC
- · Potentialtrennung durch Optokoppler: >4000 VACeff
- Hohe Strosspannungsbelastbarkeit bis zu 1000 V
- · Hohe Strosstrombelastbarkeit bis zu 250 Ap

Beschreibung

Das RP1..D10 ist ein Halbleiterrelais für die Leiterplattenmontage und stellt ein Koppelelement zwischen der Elektronikschaltung und den AC-Lasten dar. Das RP1..D10 wurde für ohmsche und induktive Lasten mit Spannungen bis zu 480 VACeff entwickelt. In dieser kompakten Ausführung ermöglicht der integrierte Kühlkörper das Schalten von hohen Strömen. Potentialtrennung über Optokoppler und Schalten von Lasten erfolgen über individuelle Baugruppen und garantieren so eine hohe Zuverlässigkeit. Das Relais kann Motoren mit Nennströmen bis zu 7 A schalten. Die Halbleiterkomponenten sind spannungsfest gegen Spitzenspannungen bis zu 1000 V. Dadurch eignet sich das RP1..D10 hervorragend zum Schalten von Asynchronmotoren in 1-Phasennetzen.

Anwendungen

Diese Halbleiterrelais sind geeignet um: Heizungen, Motore, und Ventile zu schalten.

Hauptfunktionen

- Nullspannungs- oder Momentanschaltend
- Nenn-Betriebsspannung: bis zu 480 V, Nenn-Betriebsstrom: 10 A (25 A Spitzenwert)
- Steuerspannung: 4-32 VDC (3-32 V_{eff} für die Ausführungen 230 und 400 VAC_{eff})

Referenzen

Bestellcode

👣 RP1 🗆 🗆 D10

Fügen Sie an diesen Stellen die gewünschte Option ein \Box

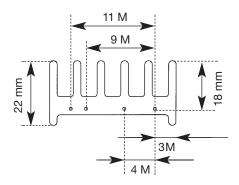
Code	Option	Beschreibung	Hinweise
R		Halblaitarralaia (DCP)	
Р		Halbleiterrelais (PCB)	
1		Anzahl der Pole	
	Α	Schaltverhalten: Nullspannungsschalter	
В		Schaltverhalten: Momentanschalter	
	23	Nenn-Betriebsspannung: 230 V _{eff}	
	40	Nenn-Betriebsspannung: 400 V _{eff}	
	48	Nenn-Betriebsspannung: 480 V _{eff}	
D		Steuerspannung: 4-32 VDC 3-32 VDC für RP1.23D10	
10	-	Nenn-Betriebsstrom: 10 A _{eff}	

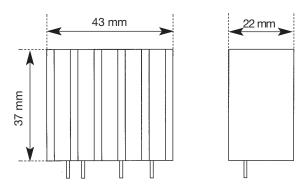
Auswahl nach den technischen Daten

Schaltverhalten	Spitzensperrspannung	Steuerspannung	Nenn-Betriebsstrom 10AACeff
230 VAC _{eff}	650 Vs	3 - 32 VDC	RP1A23D10
400 VAC _{eff}	850 Vs	4 - 32 VDC	RP1A40D10
480 VAC _{eff}	1000 Vs	4 - 32 VDC	RP1A48D10

Mit CARLO GAVAZZI kompatible Komponenten

Zweck	Name/Code der Komponente	Hinweise	
		DIN-Schienenadapter 600V mit LED	
DIN-Schienenadapter	RPM2	Beachten Sie, dass bei Montage des RP10 auf einer DIN-Schiene	
		(vertikale Montage) ein Derating-Faktor zu berücksichtigen ist.	




Merkmale

Allgemeines

Material	Epoxid beschichtet, schwarz
Gewicht	Ca. 40 g
Eingang - Lastkreis	4 kVAC _{eff}

Abmessungen

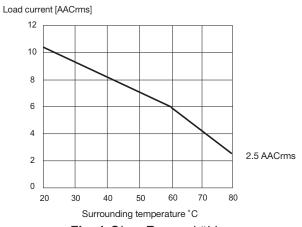
M = 2.54 mm = 1/10

Leistung

Lastspannung

	RP1.23D10	RP1.40D10	RP1.48D10	
Lastspannungsbereich				
RP1A	12 - 265 VAC _{eff} 20 - 440 VAC _{eff}		20 - 530 VAC _{eff}	
RP1B	12 - 265 VAC _{eff}	12 - 440 VAC _{eff}	12 - 530 VAC _{eff}	
Nennfrequenzbereich	45 - 65 Hz			
Spitzensperrspannung	< 650 Vp < 850 Vp < 1000 Vp			
Einschaltnullspannung	< 10 V			

Ausgänge


Nenn-Laststrom	
AC 51 bei T _a = 25°C	10 A
AC 53a bei T _a = 25°C	7 A
Min. Betriebslaststrom	10 mA
Leistungsfaktor	> 0.5
Periodischer Überlaststrom, t=1 s	16 Ap
Spitzen-Stoßstrom t=20 ms	250 Ap
Leckstrom im Sperr-Zustand	
bei Nennspanung und -fre-	< 3 mA
quenz	
I²t für Sicherung t=10 ms	340 A²s
Kritische statische	4000 \ //
Spannungssteilheit du/dt	1000 V/μs
Durchlaßspannung bei Nenn-	< 1.5 Vrms
strom	

Eingänge

Steuerspannungbereich			
RP1.23D10	3-32 VDC		
RP1.40D10, RP1.48D10	4-32 VDC		
Einschaltspannung			
RP1.23D10	2.8 VDC		
RP1.40D10, RP1.48D10	3.8 VDC		
Ausschaltspannung	1.2 VDC		
Eingangsstrom max			
RP1AD10	10 mA		
RP1BD10	17 mA		
Verpolspannung	32 VDC		
Einschaltverzögerungszeit			
RP1AD10	≤ 1/2 Zyklus		
RP1AD10 @ Vin 5VDC	≤ 200 µs		
Ausschaltverzögerungeszeit			
RP1BD10	≤ 1/2 Zyklus		
RP1BD10 @ Vin 5VDC	≤ 1/2 Zyklus		

Nenn-Laststrom in Abhängigkeit von der Umgebungstemperatur

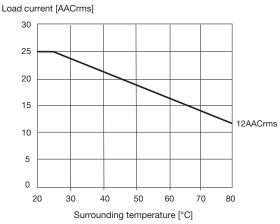


Fig. 1 Ohne Zwangskühlung

Fig. 2 Zwangskühlung mit 15m³/h

Das Diagramm wird angewendet um den max. Laststrom bei der bestehenden Umgebungstemperatur zu ermitteln.

Hinweis: Die oben angegebenen Werte für die Nennstrombelastbarkeit gelten nur, wenn das RP.10 mit den Kühlrippen in vertikaler Richtung montiert ist, sodass der Luftstrom durch die Rippen des Kühlkörpers gewährleistet ist. Informationen zu anderen Montagepositionen erhalten Sie bei Ihrem Carlo Gavazzi-Vertriebspartn.

Kompatibilität und Konformität

Zulassungen	UL508 C22.2 No. 14-13	
Standardkonformität	LVD: EN 60947-4-3 / EE: BS 60947-4-3 EMCD: EN 61000-6-2, EN 61000-6-4 / EMC: BS 61000-6-2, BS 61000-6-4	

EMC-Störfestigkeit	EMC-Störfestigkeit				
Störfestigkeit gegen die Entla-	EN/IEC 61000-4-2				
dung statischer Elektrizität	8 kV Luftentladung, 4 kV Kontakt (PC1)				
Störfestigkeit gegen	EN/IEC 61000-4-3				
Hochfrequente elektromagnet	10 V/m, von 80 MHz zu 1 GHz (PC1)				
Felder	10 V/m, von 1.4 zu 2 GHz (PC1)				
1 Claci	10 V/m, von 2 zu 2.7 GHz (PC1)				
Störfestigkeit gegen	EN/IEC 61000-4-4				
Schnelle transiente elektrische	Lastkreis: 2 kV, 5 kHz (PC2)				
Störgrößen (Burst)	Steuerkreis: 1 kV, 5 kHz (PC2)				
Störfestigkeit gegen					
leitungsgeführte Störgrößen,	EN/IEC 61000-4-6				
induziert durch hochfrequente	10V/m, von 0.15 zu 80 MHz (PC1)				
Felder					
	EN/IEC 61000-4-5				
Störfestigkeit gegen	Lastkreis, Leitung auf Leitung: 1 kV (PC2)				
Störrspannungen	Lastkreis, Leitung an Erde: 1 kV (PC2)¹				
Otoropainiarigon	Steuerkreis, Leitung auf Leitung: 500 V (PC2) ²				
	Steuerkreis, Leitung an Erde: 500 V (PC2) ²				
	EN/IEC 61000-4-11				
Störfestigkeit gegen	0% für 0.5, 1 Zyklus (PC2)				
Spannungseinbrüche	40% für 10 Zyklen (PC2)				
	70% für 25 Zyklen (PC2)				
Störfestigkeit gegen	EN/IEC 61000-4-11				
Kurzzeitunterbrechungen	0% für 5000ms (PC2)				

EMC - Strahlung				
ISM- Geräte- Funkstöreigen-	EN//FO 55044			
schaften;	EN/IEC 55011			
Grenzwerte und Messwerte	Klasse A: von 30 zu 1000 MHz			
(leitungsgeführt)				
ISM - Geräte - Funkstöreigen-	Von 0.15 zu 30 MHz			
•	EN/IEC 55011			
schaften; Grenzwerte und Messverfahren	Klasse A (Industrie) mit Filter			
	0,15 - 30MHz IEC/EN 60947-4-3			
(ausgestrahlt)	Klasse A (kein Filter erforderlich)			

Hinweise:

- · Leistungskriterien 1: Leistungsminderungen oder Funktionsverluste sind nicht zulässig, wenn das Produkt bestimmungsgemäß betrieben wird.
- Leistungskriterien 2: Während des Tests sind Leistungsminderungen oder teilweise Funktionsverluste zulässig. Nach Abschluss des Tests muss das Produkt aber selbstständig in den bestimmungsgemäßen Betrieb übergehen.
- Leistungskriterien 3: Zeitweilige Funktionsverluste sind zulässig, wenn die Funktion durch manuelle Betätigung der Steuerelemente wiederhergestellt werden kann.
- Die Leitungen für den Steuerkreis müssen zusammen verlegt werden, um die Störfestigkeit des Produkts gegen Hochfrequenzstörungen aufrechtzuerhalten.
- 1 Ein Überspannungsschutz, wie ein Varistor, über die Lastanschlüsse L1, T1 schützt das Halbleiterrelais vor Spannungsspitzen aus dem Netz.
- ² Ein Überspannungsschutz, wie eine Transildoide über die Steueranschlüsse A1, A1 schützt das Halbleiterrelais vor Spannungsspitzen aus dem Netz.
- Der Einsatz von AC-Halbleiterrelais kann je nach Anwendung und Laststrom zu leitungsgebundenen Funkstörungen führen. Der Einsatz von Netzfiltern kann in Fällen erforderlich sein, in denen der Benutzer E.M.C.-Anforderungen erfüllen muss.

Umgebungsbedingungen

Betriebstemperatur	-30° zu +80°C (-22° zu +176°F)
Lagertemperatur	-40° zu +100°C (-40° zu +212°F)
Verschmutzungsgrad	2
EU RoHS-konform	Ja
China RoHS	25

Die Erklärung in diesem Abschnitt ist in Übereinstimmung mit dem Standard der Volksrepublik China Electronic Industry Standard SJ/T11364-2014 erstellt: Kennzeichnung für den eingeschränkten Einsatz gefährlicher Stoffe in elektronischen und elektrischen Produkten.

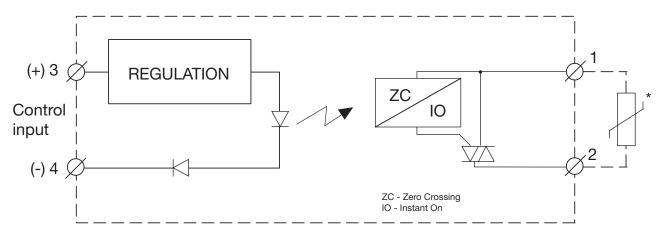
	Giftige oder gefährliche Stoffe und Elemente					
Name des Bauteils	Blei (Pb)	Quecksilber (Hg)	Cadmium (Cd)	Sechswertiges Chrom (Cr(VI)	Polybromierte Biphenyle (PBB)	Polybromierte Diphenylether (PBDE)
Motor- schaltgerät	х	0	0	0	0	0

O: Zeigt an, dass der genannte gefährliche Stoff, der in homogenen Materialien für diesen Teil enthalten ist, unterhalb der Grenzwertanforderung von GB/T 26572 liegt.

X: Zeigt an, dass der in einem der für diesen Teil verwendeten homogenen Materialien enthaltene gefährliche Stoff über der Grenzwertanforderung von GB/T 26572 liegt.

这份申明根据中华人民共和国电子工业标准

SJ/T11364-2014: 标注在电子电气产品中限定使用的有害物质


零件名称	有毒或有害物质与元素					
	铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr(Vl))	多溴化联苯 (PBB)	多溴联苯醚 (PBDE)
功率单元	Х	0	0	0	0	0

O:此零件所有材料中含有的该有害物低于GB/T 26572的限定。

X: 此零件某种材料中含有的该有害物高于GB/T 26572的限定。

Funktionsdiagramm

* Der Varistor ist nicht im Lieferumfang enthalten. Für einen höheren Stoßspannungspegel ist der Anschluß eines Varistors über die die Klemmen 1-2 notwendig.

Anschlusseigenschaften

Anschlüsse	Kupfer, verzinnt		
Löttemperatur der An-	max. 300°C @ 5 sek.		
schlusspins			

COPYRIGHT ©2021

Änderungen vorbehalten. PDF-Download: https://gavazziautomation.com